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ABSTRACT

We give a homotopy theoretic characterization of stacks on a site C as

the homotopy sheaves of groupoids on C. We use this characteriza-

tion to construct a model category in which stacks are the fibrant ob-

jects. We compare different definitions of stacks and show that they lead

to Quillen equivalent model categories. In addition, we show that these

model structures are Quillen equivalent to the S2-nullification of Jardine’s

model structure on sheaves of simplicial sets on C.

1. Introduction

The main purpose of this paper is to show that the classical definition of

stacks [DM, Definition 4.1], [Gi, II.2.1], can be stated in terms of homotopy

theory. From this point of view the definition appears natural, and places

stacks into a larger homotopy theoretic context. Constructions that are com-

monly performed on stacks such as 2-category pullbacks, stackification, sheaves

over a stack and others, have easy homotopy-theoretic interpretations.

The basic idea is this: a stack M is an assignment to each scheme X of a

groupoid M(X), which is required to satisfy ‘descent conditions’ [Gi, II.1.1].
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The descent conditions describe the circumstances under which we require that

local data glue together to yield global data.

Naively, one might propose a “local-to-global” requirement that the assign-

ment “isomorphism classes of -” satisfy the sheaf condition. However, for very

fundamental reasons, this almost never happens in examples. Taking isomor-

phism classes is a localization process, and such processes rarely preserve limits

such as those which arise in the statement of the sheaf condition.

Instead, one can ask that the assignment of groupoids satisfy a sheaf condition

with respect to the best functorial approximation to the limit which

respects isomorphism classes. This is called the homotopy limit, denoted holim,

and is the total right derived functor of inverse limit, (see [DS, Sections 9–10]).

We prove that this homotopy sheaf condition is exactly the content of the

descent conditions and so, in this sense, stacks are the homotopy sheaves.

Theorem 1.1: Let C be a Grothendieck topology. Let Grpd/C denote the

category of categories fibered in groupoids over C (see Definition 3.1). For each

E ∈ Grpd/C, and X ∈ C, denote by E(X) the groupoid of maps Hom(C/X, E).

Then E is a stack [DM, Definition 4.1] if and only if for every cover {Ui → X}

in C we have an equivalence of categories

E(X)
∼ // holim

(

∏

E(Ui) +3
∏

E(Uij) _*4 ∏ E(Uijk) . . .
)

.

Here Ui0...in
denotes the iterated fiber product Ui0 ×X · · · ×X Uin

, and we take

the homotopy limit of this cosimplicial diagram in the category of groupoids

(see Section 2).

Classically stacks were defined either as categories fibered in groupoids or lax

presheaves [Brn, Section 1] satisfying descent conditions. It is not hard to check

that categories fibered in groupoids and lax presheaves are equivalent categories

and that these two definitions agree [Holl, Appendix B]. The following results

make precise the sense in which it suffices to work with actual presheaves of

groupoids instead of lax presheaves or categories fibered in groupoids. Let

P (C, Grpd) denote the categories of presheaves of groupoids on C.

Theorem 1.2: There exists a model category structure on Grpd/C in which

weak equivalences are the fiberwise equivalences of groupoids. Similarly, there

exists model category structure on P (C, Grpd) in which weak equivalences are

the objectwise equivalences of groupoids. For these two model structures the
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adjoint pair (see Section 3.3)

Grpd/C

Γ
..
P (C, Grpd)

p
mm

is a Quillen equivalence.

This model structure on Grpd/C encodes many of the classical constructions

for categories fibered in groupoids and for stacks. The equivalences of stacks are

just the weak equivalences. The 2-category pullback is the homotopy pullback.

Writing these constructions in terms of standard homotopy theory makes clear

their functoriality properties and relations with one another.

This adjunction sends the full subcategory of stacks in Grpd/C to the full

subcategory of P (C, Grpd) of those presheaves which satisfy descent, which we

call stacks.

Definition 1.3: Let C be a Grothendieck topology. A presheaf of groupoids, F

on C is a stack if for every cover {Ui → X} in C, we have an equivalence of

categories

F (X)
∼ // holim

(

∏

F (Ui) +3
∏

F (Uij) _ *4 ∏F (Uijk) . . .

)

.

The fact that (Γ, p) is a Quillen equivalence tells us that it is equivalent to

make any homotopy theoretic construction in one of these categories or the

other, (i.e. we can use Γ to translate our problem in Grpd/C into one about

presheaves, solve it and then apply p to the result).

Finally, we show that the model category structures of Theorem 1.2 can be

localized and the result is a model structure even better suited to the study

of stacks. One can also consider the category of sheaves of groupoids on C,

denoted Sh(C, Grpd), instead of presheaves.

Theorem 1.4: There are simplicial model category structures Grpd/CL,

P (C, Grpd)L and Sh(C, Grpd)L, in which the stacks are the fibrant objects.

The adjoint pairs

Grpd/CL

Γ ..
P (C, Grpd)L

p
mm

sh
00 Sh(C, Grpd)L,

i
pp
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are Quillen equivalences (where the right adjoints point to presheaves). All of

these functors take stacks as defined in the domain category to stacks as defined

in the range category and thus restrict to give adjoint pairs between the stacks

in each of these categories.

Corollary 1.5: In each of the above model categories the fibrant replacement

functor gives a stackification functor.

Of the different categories mentioned above, the simplest to analyze is pre-

sheaves of groupoids which is closely related to presheaves of simplicial sets.

Here a form of Dugger’s local lifting conditions [DHI, Section 3], modified for

groupoids, (see Definition 5.6) allows us to characterize weak equivalences in

a simple way (Theorem 5.7). The comparison with the homotopy theory of

simplicial sets is encapsulated in the following result.

Proposition 1.6: The above model structure on P (C, Grpd) is Quillen equiv-

alent to Joyal’s model category structure on P (C, sSet) localized with respect

to the maps ∂∆n ⊗ X → ∆n ⊗ X , for each X ∈ C and n > 2.

This theorem tells us that the homotopy theory of stacks is recovered from

Joyal’s model category by eliminating all higher homotopies. A direct corollary

of this Quillen equivalence is the following result which nicely generalizes the

usual criterion for a map to be an isomorphism between two sheaves of sets.

Corollary 1.7: If the topology on C has enough points [MM, p. 521], the

weak equivalences in P (C, Grpd) are the stalkwise equivalences of groupoids.

The characterization of stacks as the homotopy sheaves of groupoids is the

source and inspiration for all of the above results. Furthermore this characteri-

zation generalizes naturally to a definition of n-stack as follows

Definition 1.8: A presheaf of simplicial sets F on C is an n-stack if for every

X in C, F (X) is a Kan complex, and for every hypercover U• → X in C [DHI,

Definition 4.2], we have an equivalence of categories

F (X)
∼ // holimF (U•)

where the homotopy limit is taken in the category of (Sn+1)−1sSet, the Sn+1

nullification of simplicial sets.
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The reason for considering hypercovers as opposed to covers is discussed in

the introduction of [DHI]. There a model category is presented for presheaves

of simplicial sets on C in which these n-stacks are the fibrant objects, and the

analogues of 1.6 and 1.7 are proven.

For n = 1, Definition 1.8 is equivalent to 1.3, by [DHI, Theorem 1.1], and

Theorems 1.4 and 5.7. This is the foundation for the recent work of Toen and

Vezzosi on “homotopical algebraic geometry” (see [TV, Section 3]), following

Simpson who first showed that model categories are useful in understanding the

theory of higher stacks, see [HS].

1.1. Relation to other work. In [JT], Joyal and Tierney introduce a model

structure on sheaves of groupoids on a site where the fibrant objects satisfy a

strengthening of the stack condition, and are called strong stacks. It follows from

Proposition 5.10 that our model structures for stacks are Quillen equivalent to

Joyal and Tierney’s.

The main difference of our treatment is that we show that the descent con-

ditions, and hence the classical definition of stack can be described in

terms of a natural homotopy theoretic generalization of the sheaf condition. It

is this characterization which leads to a model category structure where the fi-

brant objects are precisely the stacks. In addition, our construction of the model

structure draws a precise connection between the classical theory of stacks and

the homotopy theory of simplicial presheaves.

1.2. Contents. In section 2 we define the model structure on groupoids, and

prove that it is Quillen equivalent to a localization of simplicial sets with respect

to the map S2 → ∗, called the S2 nullification of sSet. We then present formulas

for homotopy limits and colimits in Grpd and prove that the descent category is

a model for the homotopy inverse limit of a cosimplicial diagram of groupoids.

In Section 3, we review the definition of categories fibered in groupoids over a

fixed base category C, denoted Grpd/C. We construct an adjoint pair of functors

between Grpd/C and the category of presheaves of groupoids on C. We show

that these functors send the subcategory of stacks in Grpd/C to the subcategory

of stacks in P (C, Grpd). Using this adjoint pair we prove Theorem 1.1.

In Section 4, we put model structures on Grpd/C and P (C, Grpd). In the basic

model structure on each of these categories the weak equivalences are defined to

be objectwise (or fiberwise). We note that the adjoint pair (p, Γ) between these

categories is a Quillen equivalence. We also observe that these model structures
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can be localized with respect to the local equivalences {holimU• → X}. In

these local model structures the fibrant objects are the stacks, and the adjoint

pair (p, Γ) is still a Quillen equivalence. This proves most of Theorem 1.4.

In Section 5, we define the local lifting conditions and prove Proposition 1.6.

Finally, we show that there is a local model structure on sheaves of groupoids

on C for which (sh, i) is a Quillen equivalence, which completes the proof of

Theorem 1.4.

Appendix A contains proof that limits and colimits exist in the category

Grpd/C of categories fibered in groupoids, which is needed to show that one can

put a model structure on Grpd/C.

Appendix B contains a proposition about pushouts of categories needed for

the proof of the left properness of the model structure on Grpd and for that on

Grpd/C.

1.3. Notation and assumptions. For a general introduction to Grothendieck

topologies, see [Ta], [MM]. So as not to run into set theoretic problems, we

assume that the Grothendieck topology C is a small category.

We write Pre(C) for the category of presheaves of sets on C. For {Ui → X}

a cover in C, and F a presheaf on C, let

• the n + 1-fold product U ×X U ×X · · · ×X U denote the coproduct
∐

Ui0 ×X · · ·×X Uin
, of the representable functors in Pre(C), where the

coproduct is taken over all multi-indices (i0, . . . , in).

• U• denote the simplicial diagram in Pre(C) with (U•)n equal to the

n+1-fold product U ×X · · ·×X U , with face and boundary maps defined

by the various projection and diagonal maps. This is called the nerve

of the cover {Ui → X}.

• F (U ×X U ×X · · · ×X U) denote the product
∏

F (Ui0 ×X · · · ×X Uin
),

and F (U•) the cosimplicial diagram HomPre(C)(U•, F ).

For model categories and their localizations our references are [DS], [Ho], [Hi].

1.4. Acknowledgments. The results in this paper are part of my doctoral

thesis [Holl], MIT (2001), written under the supervision of Mike Hopkins. Many

thanks are owed to Dan Dugger, Gustavo Granja, and Mike Hopkins, for many

helpful conversations and ideas, without which this paper would not exist.
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2. Homotopy limits and colimits of groupoids

We discuss here a model structure on the category of groupoids, denoted Grpd

and prove some results about homotopy limits and colimits which will enable us

in the next section to interpret the descent conditions in a homotopy theoretic

manner and prove Theorem 1.1. The proofs of the results in this section are

not hard. For more details the reader is referred to [Holl].

2.1. Model structure on Grpd. The model structure we discuss on Grpd

is derived from that on sSet via the adjoint pair (πoid, N), where πoid denotes

the fundamental groupoid and N the nerve construction. Recall, πoidX is the

groupoid with objects X0, and morphisms freely generated by X1, subject to

the relations s0a = ida for each a ∈ X0, and d2x ◦ d0x = d1x for each x ∈ X2.

It follows that all morphisms in πoidX are isomorphisms.

We will sometimes abuse notation and denote the groupoid πoid(∆
i) by ∆i.

This is the groupoid with i+1 objects and unique isomorphisms between them.

Similarly, we will sometimes denote πoid(∂∆i) by ∂∆i. Let BG denote the

groupoid with one object whose automorphism group is the group G.

Note that the morphisms ∂∆i → ∆i, i = 0, 1, 2, are

∅ → ⋆, {⋆, ⋆} → ∆1, ∆2 × (BZ → ⋆).

Theorem 2.1: There is a left proper, simplicial, cofibrantly generated model

category structure on Grpd in which:

• weak equivalences are functors which induce an equivalence of cate-

gories,

• fibrations are the functors with the right lifting property with respect

to the map ∆0 → ∆1,

• cofibrations are functors which are injections on objects.

The generating trivial cofibration is the morphism ∆0 → ∆1, and the gener-

ating cofibrations are the morphisms ∂∆i → ∆i, i = 0, 1, 2.

Note 2.2: In this model category structure all objects are both fibrant and

cofibrant, so all weak equivalences are homotopy equivalences.

This model category structure appears in [An, Bo], a detailed description

and proof can be found in [St], Section 6. The fact that it is simplicial and



100 SHARON HOLLANDER Isr. J. Math.

cofibrantly generated is easy to check, and the left properness follows from the

fact that all objects are cofibrant, see B.1.

Corollary 2.3: With this model structure on Grpd, the adjoint pair

πoid : sSet ↔ Grpd : N

is a Quillen pair.

The following are important observations which we will use freely.

Lemma 2.4: Let G
f

−→ H be a map of groupoids. The following are equivalent:

• f is a weak equivalence in Grpd;

• Nf is weak equivalence in sSet.

Similarly, the following are equivalent:

• f is a (trivial) fibration in Grpd;

• Nf is a (trivial) fibration in sSet;

• f has the right lifting property with respect to ∆0 → ∆1 (with respect

to ∂∆n → ∆n for n = 0, 1, 2).

Consider the model structure on sSet which is the localization [Hi, Definition

3.3.1.1] of the usual model structure with respect to the map ∂∆3 → ∆3. We

will call this the S2-nullification of sSet [DF], denoted (S2)−1sSet. Notice

that the maps ∂∆n → ∆n, n > 2, are all weak equivalences in (S2)−1sSet, and

so (S2)−1sSet is also the localization of sSet with respect to this set of maps.

Lemma 2.5: In (S2)−1sSet, weak equivalences are the maps which induce an

isomorphism on π0 and π1 at all base points.

Theorem 2.6: The adjoint pair πoid : (S2)−1sSet ↔ Grpd : N is a Quillen

equivalence.

2.2. Homotopy limits and colimits. In [Hi, 18.1.2, 18.1.8, 18.5.3], explicit

constructions are given of homotopy limit and colimit functors in arbitrary

simplicial model categories. Explicit formulas for homotopy limits and colimits

in simplicial sets go back to [BK, Section XI.4]. Here we will give simplified

formulas for homotopy limits and colimits in case the simplicial structure on

the category derives from an enrichment with tensor and cotensor (see [Db])

over Grpd.
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Definition 2.7: Let M be a category enriched with tensor and cotensor over

sSet. We say that the simplicial structure on M derives from an enrichment

over Grpd, if M is enriched with tensor and cotensor over Grpd, and if for all

A, B ∈ M, K ∈ sSet, there are natural isomorphisms

sSet(A, B) ∼= N(Grpd(A, B)), AK ∼= AπoidK , A ⊗ K ∼= A ⊗ πoidK.

compatible with the natural isomorphism for each pair of simplicial sets

πoid(K × K ′) ∼= πoidK × πoidK
′.

Our main concern will be the homotopy limit of a cosimplicial diagram, and

dually the homotopy colimit of a simplicial diagram. Our simplified formula for

the former will allow us in the next section to interpret the descent conditions

for stacks in a homotopy-theoretic manner.

Let C be a simplicial model category, and I a small category. The homotopy

limit of an I-diagram X in C with each X(i) fibrant is the equalizer of the two

natural maps
∏

i

X(i)N(I/i) ⇒
∏

j
α

−→i

X(i)N(I/j),

where I/i denotes the category of objects over i. Similarly, the homotopy colimit

of an objectwise cofibrant I-diagram X is the coequalizer of the two maps
∐

i
α

−→j

X(i) ⊗ N(j/I) ⇒
∐

i

X(i) ⊗ N(i/I),

where j/I denotes the category of objects under j.

For Y a fibrant object and X ∈ CI objectwise cofibrant, these functors satisfy

the equation

(2.8) sSet(hocolimX, Y ) ∼= holim sSet(X, Y ).

Theorem 2.9: Let C be a simplicial model category whose simplicial structure

derives from an enrichment over Grpd, and let X• be a cosimplicial object in

C, with each X i fibrant. Then a model for the homotopy inverse limit of X• is

given by the equalizer of the natural maps

2
∏

i=0

(X i)∆
i

⇒

i≤2,j≤1
∏

[j]→[i]

(X i)∆
j

.

Proof. First, notice that writing sk2 ∆• for the 2-skeleton of ∆•, the inclusion

πoid sk2 ∆• → πoid∆
• is an isomorphism. It follows that TotX•, the space
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of maps from ∆• to X•, is isomorphic to Tot2 X•, the space of maps from

the restriction ∆•|∆[2] to X•|∆[2] where ∆[2] denotes the full subcategory of ∆

with objects [0], [1] and [2]. Since the map πoid sk1 ∆2 −→ πoid∆
2 is surjective,

Tot2X
• is given by the equalizer in the statement of the theorem.

It now suffices to show that the homotopy limit of X• is naturally homotopy

equivalent to TotX•. Using the definition of the homotopy limit in a simpli-

cial model category given above, this is an easy consequence of the following

Proposition.

Proposition 2.10: There is a homotopy equivalence of cosimplicial groupoids

F : πoidN(∆/[•]) ↔ πoid∆
• : G.

Proof. Morphisms in πoidN(∆/[n]) are generated by the commutative triangles

[k] //

  @
@@

@@
@@

[m]

~~}}
}}

}}
}}

[n]

and their formal inverses. Since the spaces N(∆/[n]) and ∆n are contractible

in their fundamental groupoids there is a unique isomorphism between any two

objects. Therefore when defining functors between them it suffices to set the

values on objects.

Let πoidN(∆/[n])
Fn−→ πoid∆n be the functor which sends the object [m] → [n]

to the vertex [0]
em−→ [m] → [n], where ek : [0] → [k] sends 0 to k. One can check

easily that F is natural in n, and so defines a morphism

πoidN(∆/[•])
F

−→ πoid∆• ∈ cGrpd.

Let Gn be the functor which is defined on objects by including [0] → [n] in

∆/[n]. Again it is easy to check that Gn is natural in [n], and so defines a

morphism πoid∆• G
−→ πoidN(∆/[•]) in cGrpd.

The composition F ◦G is the identity. There are unique natural transforma-

tions Gn ◦Fn
αn−→ id which must commute with the simplicial operations.

The groupoid Tot2(X
•) will also be called the descent category of X•.

From now on, when we refer to the homotopy limit of a cosimplicial groupoid

X• we will mean the simpler model Tot2(X
•). The following corollary gives an

explicit description of this groupoid.
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Corollary 2.11: The homotopy inverse limit of a cosimplicial groupoid X•

is the groupoid whose

• objects are pairs (a, d1(a)
α

−→ d0(a)), with a ∈ obX0, α ∈ morX1, such

that s0(α) = ida, and d0(α) ◦ d2(α) = d1(α),

• morphisms (a, α) → (a′, α′) are maps a
β

−→ a′, such that the following

diagram commutes

d1(a)
d1(β)

//

α

��

d1(a′)

α′

��
d0(a)

d0(β)
// d0(a′)

Dually we have the following theorem giving a formula for homotopy colimits

of simplicial diagrams.

Theorem 2.12: Let C be a simplicial model category whose simplicial struc-

ture derives from a groupoid action and let X• ∈ sC, be such that each Xi is

cofibrant. Then the homotopy colimit of X• is naturally homotopy equivalent

to the coequalizer of the maps

n≤1,m≤2
∐

[n]−→[m]

Xm ⊗ ∆n ⇒
2

∐

n=0

Xn ⊗ ∆n.

3. Stacks

There are different categories in which the descent condition can be formulated

and so in which stacks can be defined. In this section we will discuss stacks in

the context of categories fibered in groupoids over C, denoted Grpd/C [DM, Gi].

After discussing some important properties of Grpd/C, we will construct an

adjoint pair p : P (C, Grpd) ↔ Grpd/C : Γ, satisfying the following properties:

• For F in P (C, Grpd), the map F (X) → ΓpF (X) is an equivalence of

groupoids, for all X ∈ C.

• For E ∈ Grpd/C, the map pΓE → E is an equivalence of categories over

C.

In the following subsection we will discuss the classical definition of stacks in

Grpd/C used in algebraic geometry [DM]. We show that it can be reformulated
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in terms of homotopy limits of groupoids, expressing stacks as those objects

satisfying the homotopy sheaf condition.

3.1. Categories fibered in groupoids over C.

Definition 3.1 ([DM]): The category Grpd/C is the full subcategory of Cat/C

whose objects are functors E
F
−→ C satisfying the following properties:

(1) Given Y
f

−→ X ∈ C, and X ′ ∈ E such that F (X ′) = X , there exists

Y ′ f ′

−→ X ′ ∈ E such that F (f ′) = f .

(2) Given a diagram in E, over the commutative diagram in C,

Y ′

f ′

��

F +3 Y

h

��~~
~~

~~
~~

f

��
Z ′

g′

// X ′
F +3 Z

g
// X,

with F (f ′) = f, F (g′) = g, there exists a unique h′ such that g′◦h′ = f ′

and F (h′) = h.

This definition may seem involved but it becomes very simple when we look

at the functors FX′ induced by F on the over categories

E/X ′ FX′

−→ C/X,

where X ′ ∈ E, and F (X ′) = X . The conditions for E
F

−→ C to be a category

fibered in groupoids over C are equivalent to the simple requirement that each

functor FX′ induce a surjective equivalence of categories.

Let EX denote the fiber category over X . This has objects those of E lying

over X and morphisms those of E lying over idX . It is easy to see that if

E → C ∈ Grpd/C, the fiber categories EX are groupoids.

Example 3.2: The simplest examples of categories fibered in groupoids over C

are the projection functors C/X → C for each X ∈ C. If Y
f

−→ X is an object

of C/X , then (C/X)/f ∼= C/Y , and so conditions 1. and 2. above are trivially

satisfied. Notice that (C/X)Y is the discrete groupoid whose set of objects is

HomC(Y, X).

Another class of simple examples is C × G
pr
−→ C, for G ∈ Grpd. Here the

fibers over each X ∈ C are canonically isomorphic to G.

The proofs of the following results are straightforward.
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Lemma 3.3: Grpd/C is enriched with tensor and cotensor over Grpd. The ob-

jects of Grpd(E, E′) are the functors E → E′ over C, and the morphisms are

the natural isomorphisms between such functors covering the identity natural

automorphism of idC. Moreover, the tensor is given by the formula

E ⊗ G := E ×C (C × G),

and the cotensor EG is the category of functors from (G → ∗) to (E → C).

Proposition 3.4: Let E
F
−→ C ∈ Grpd/C, and X ∈ C, then

(1) for any X ′ ∈ E with F (X ′) = X there is a section

E

F

��
C/X

G

==|
|

|
|

// C

such that G(idX) = X ′.

(2) If G, G′ : C/X → E are two sections and G(idX)
f

−→ G′(idX) is a

morphism EX , then there is a unique natural isomorphism G
φ

−→ G′

over idC, with φ(idX) = f .

It follows that, for each X ∈ C, the natural map

Grpd(C/X, E) → EX

given by evaluation at idX is a surjective equivalence of groupoids. There is a

left inverse which is unique up to unique natural isomorphism.

This says that given E → C there is a functorial “rigidification” of the fibers.

Later we will use this method of rigidification to construct a functor from Grpd/C

to P (C, Grpd).

The following observation, which can be proven in a similar fashion, will be

used in the next subsection.

Proposition 3.5: Let E → C be a category fibered in groupoids, and Y
f

−→ X

morphism in C. There are “pullback” functors EX
f∗

−→ EY which are unique up

to a unique natural isomorphism.

3.2. Stacks. Let E → C be a category fibered in groupoids, and assume

that for each X
f

−→ Y we have chosen pullback functors EY
f∗

−→ EX .
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Given a morphism Ui → U ∈ C, we will sometimes abuse notation and de-

note the pullback of an element a ∈ EU to EUi
by a|Ui

. In defining some of

the maps below, we will also make implicit use of the natural isomorphisms

(a|Ui
)|Uij

∼= a|Uij
.

Definition 3.6 ([Gi],[DM]): A stack in Grpd/C is an object E → C which satisfies

the following properties for any cover {Ui → X} :

(1) given a, b ∈ EX , the following is an equalizer sequence

HomEX
(a, b) →

∏

HomEUi
(a|Ui

, b|Ui
) ⇒

∏

HomEUij
(a|Uij

, b|Uij
),

(2) given ai ∈ EUi
and isomorphisms

ai|Uij

αij

−→ aj |Uij ,

satisfying the cocycle condition

αjk|Uijk
◦ αij |Uijk

= αik|Uijk,

then there exist a ∈ EX , and isomorphisms a|Ui

βi
−→ ai, such that the

following square commutes

(3.7) a|Uij

βi|Uij
//

=

��

ai|Uij

αij

��
a|Uij

βj|Uij
// aj |Uij

.

In this case, we say that E → C satisfies descent.

Note 3.8: The cocyle condition applied to indicies (i, i, j) implies that αii|Uiij
=

id which implies that αii is itself the identity by (1) of 3.6.

This definition seems very complicated, but it can be considerably simplified if

we recall the description of the homotopy inverse limit of a cosimplicial groupoid

given in Corollary 2.11.

Theorem 3.9 (Theorem 1.1): A category fibered in groupoids E → C is a stack

if and only if for all covers {Ui → X}

(3.10) Grpd(C/X, E) → holimGrpd(C/U•, E)

is an equivalence.
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Proof. We begin by showing that condition (1) in Definition 3.6 is equivalent to

the requirement that for objects Fa, Fb ∈ Grpd(C/X, E), the set of morphisms

Fa → Fb is in bijective correspondence with the set of morphisms between their

images in holimGrpd(C/U•, E).

Consider objects Fa, Fb ∈ Grpd(C/X, E), and let a = Fa(idX) and b =

Fb(idX) in EX . Evaluation at id(−) induces bijections

Hom(Fa, Fb) //

∼=

��

∏

Hom(Fa|Ui
, Fb|Ui

) +3

∼=

��

∏

Hom(Fa|Uij
, Fb|Uij

)

∼=

��
HomEX

(a, b) //
∏

HomEUi
(a|Ui

, b|Ui
) +3

∏

HomEUij
(a|Uij

, b|Uij
).

It follows that the top line is an equalizer if and only if the bottom one is.

By corollary 2.11, the top line is an equalizer if and only if Hom(Fa, Fb) is

in bijective correspondence with the set of maps from the image of Fa to the

image of Fb in holimGrpd(C/U•, E). The requirement that the bottom line be

an equalizer is condition (1) in Definition 3.6.

To finish the proof we have to show that condition (2) is equivalent to the

requirement that every object in holimGrpd(C/U•, E) be isomorphic to one in

the image of Grpd(C/X, E). This follows from the description of morphisms in

Corollary 2.11 once we show that specifying an object in holim Grpd(C/U•, E)

is equivalent to specifying descent datum as in condition (2) of Definition 3.6.

By corollary 2.11, an object of holimGrpd(C/U•, E), consists of an object

Fc ∈
∏

Grpd(C/Ui, E), and an isomorphism d1Fc
α

−→ d0Fc, satisfying

d0(α) ◦ d2(α) = d1(α) and s0(α) = idFc
.

For any U
f

−→ V , and Fa ∈ Grpd(C/V, E) with Fa(idV ) = a, the evaluation

Fa|U (idU ) is a choice of pullback of a along f , and so Fa|U (idU ) is canonically

isomorphic to the pullback f∗a, which we chose in advance. Evaluating at idUi

determines c ∈
∏

EUi
, and isomorphisms αij = α(idUij

) satisfying the cocycle

condition. Composing with the canonical isomorphisms c|Uij
∼= Fc|Uij

(idUij
),

we obtain isomorphisms c|Ui

ᾱij

−→ c|Uj
, satisfying the cocycle condition.

Conversely, given c ∈
∏

EUi
and αij , as in condition (2) satisfying ∆∗(αii) =

idUi
(see Note 3.8), we can lift them to an object Fc ∈

∏

Grpd(C/Ui, E), and

an isomorphism d1Fc
α

−→ d0Fc. Since these lifts are essentially unique they

must also satisfy the cocycle condition and s0(α) = idFc
and hence determine

an object of holimGrpd(C/U•, E).
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3.3. Adjoint pair between Grpd/C and P (C, Grpd). Let E → C be a cate-

gory fibered in groupoids. By Corollary 3.4, the assignment to each X ∈ C of

the sections Grpd(C/X, E) is a functor such that Grpd(C/X, E)
∼
−→ EX .

Definition 3.11: Let Γ: Grpd/C → P (C, Grpd) be the functor which sends E → C

to the presheaf ΓE(X) := GrpdGrpd/C(C/X, E).

Let p : P (C, Grpd) → Grpd/C be the functor defined by setting pF to be the

category whose

• objects are pairs (X, a) with a ∈ F (X),

• morphisms (X, a) → (Y, b) are pairs (f, α) where X
f

−→ Y ∈ C and

a
α

−→ F (f)(b) is an isomorphism in F (X).

The composition of two morphisms (X, a)
(f,α)
−→ (Y, b)

(g,β)
−→ (Z, c) is the pair

(g ◦ f, F (f)(β) ◦ α).

It is easy to check that both p and Γ preserve the enrichment over Grpd with

tensor and cotensor.

Theorem 3.12: The functors p : P (C, Grpd) ↔ Grpd/C : Γ form an adjoint

pair. The unit of the adjunction is an objectwise equivalence, and the counit is

a fiberwise equivalence of groupoids.

This adjoint pair restricts to an adjunction between the subcategory of stacks

and Grpd/C and the subcategory of presheaves P ∈ P (C, Grpd) which satisfy

the following condition:

• For any cover {Ui → X} in C the induced map P (X) → holimP (U•) is

an equivalence of groupoids.

With this motivation we will also call a presheaf of groupoids satisfying the

above condition a stack, (Definition 1.3).

4. Model structures

In this section we put model structures on P (C, Grpd) and Grpd/C. We first

construct basic model structures, then we localize them so that the local weak

equivalences detect the topology on C. We then observe that in these local

model structures, the fibrant objects are the stacks, and the weak equivalences

are the maps which locally are an equivalence of groupoids. Isomorphisms

between sheaves can be detected locally and this property characterizes the
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subcategory of sheaves. It follows from our analysis that analogously global

equivalences between stacks can be detected locally, and this property is a

characterization of stacks.

We will use the notation of [Hi, Definition 7.1.3, 9.1.5] for the model category

axioms.

4.1. The basic model category structures. Henceforth we will abuse

notation and denote by X the representable functor HomC(−, X) considered as

a discrete groupoid.

Proposition 4.1: There is a left proper, cofibrantly generated, model category

structures on P (C, Grpd), where

• f is a weak equivalence or a fibration if Grpd(X, f) is one for all X ∈ C,

• cofibrations are the maps with the left lifting property with respect to

trivial fibrations.

The maps of the form X → X ⊗∆1, for X ∈ C, form a set of generating trivial

cofibrations. The maps of the form X⊗∂∆i → X⊗∆i for X ∈ C and i = 0, 1, 2

form a set of generating cofibrations.

Proof. The proof is an easy exercise.

Now we construct a model category on Grpd/C relative using the set of gen-

erators C/X → C.

Theorem 4.2: There is a left proper, cofibrantly generated, simplicial model

category structure on Grpd/C in which

• f is a weak equivalence or a fibration if GrpdGrpd/C(C/X, f) is one for

all X ∈ C,

• cofibrations are the maps with the left lifting property with respect to

trivial fibrations.

The maps of the form C/X → (C/X ⊗∆1), for X ∈ C, form a set of generating

trivial cofibrations. The maps of the form (C/X ⊗ ∂∆i) → (C/X ⊗ ∆i), for

X ∈ C and i = 0, 1, 2 form a set of generating cofibrations.

Proof. For M1, see Appendix A. M2–M4(1) are obvious. In order to apply

the small object argument to prove M5, we need to check that the objects

C/X ⊗G → C with G = (∂)∆i, i = 0, 1, 2, are small with respect to the colimits

which appear in the small object argument. First notice that sequential colimits
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in Grpd/C agree with sequential colimits in Cat /C. For convenience, in the

construction of the factorization for M5(1) we will take pushouts along both

the generating cofibrations and the generating trivial cofibrations.

Let Ei → Ei+1 be constructed as usual, using the small object argument, and

let consider a map F : C/X −→ colim Ei. F (idX) lifts to some element X ′ in

some Ei, and we can extend this to a map F ′
i : C/X −→ Ei. Let F ′ be the

composition C/X → Ei → colimEi. Then F ′(idX) = F (idX), and so there

is a unique natural isomorphism φ : F −→ F ′ making the following diagram

commute

C/X
F ′

i //

��

F ′

&&MMMMMMMMMMM
Ei

��
C/X //

F

33C/X ⊗ ∆1
φ

//___ colim Ei.

The map C/X → C/X ⊗ ∆1 is one of the generating trivial cofibrations, so by

construction we obtain a lift

C/X
F ′

i //

��

Ei

��
Ei+1

��
C/X //

44iiiiiiiiiiii

F

33C/X ⊗ ∆1
φ

//

88q
q

q
q

q

colim Ei.

Thus C/X is small with respect colimEi. Since natural transformations between

sections are determined uniquely by their evaluation on idX , a similar argument

shows that C/X ⊗ (∂)∆i is small with respect to colimEi. This completes the

proof of M5(1).

For M5(2) use the small object argument for the generating trivial cofibra-

tions. We need to show that the first map in the factorization is a weak equiv-

alence. Note that if E → E′ has the left lifting property with respect to all

fibrations, then in particular it has the left lifting property with respect to

E → C and (E′)∆
1

→ (E′)∂∆1

, and therefore it is an equivalence of categories

over C. An equivalence of categories over C is clearly a weak equivalence. It
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follows that the cofibration constructed using the small object argument for

M5(2) is also a weak equivalence.

M4(2) now follows by the same argument given in the proof of Theorem 4.1.

M7 follows immediately from the definition of (trivial) fibration in Grpd/C and

the adjunction formulas given by the simplicial structure.

To show left properness, it suffices to show that the pushout of a trivial

fibration along a cofibration is a weak equivalence. We begin by noting that

trivial fibrations are surjective equivalences of categories. Let F : E′ −→ E′′ be

a trivial fibration and let X ′, Y ′ ∈ E′, X ′′ = F (X ′), Y ′′ = F (Y ′). Clearly F is

surjective on objects and morphisms. We will show that the map

HomE′(X ′, Y ′) → HomE′′(X ′′, Y ′′)

is a bijection. If F (f ′) = F (g′) then f ′ and g′ have the same image in C and so

there is a unique isomorphism h′ filling in the following triangle in E′:

X ′

f ′

!!C
CC

CC
CC

C

h′

��
�
�

�

X ′
g′

// Y ′.

By the uniqueness of the lifting h′, F (h′) = idX′′ ∈ E′′. Since F is a trivial

fibration it follows that h′ = idX′ .

Now note that cofibrations in Grpd/C are inclusions on objects as this is the

case for the generating cofibrations. Proposition B.1 implies that the pushout

in Cat /C of a surjective equivalence of categories along an inclusion on objects

is still an equivalence of categories over C. This simultaneously implies that the

pushout in Cat /C coincides in this case with the pushout in Grpd/C (see the

proof of Theorem A.1) and completes the proof.

Corollary 4.3: The adjoint pair p : P (C, Grpd) ↔ Grpd/C : Γ is a Quillen

equivalence.

4.2. Local model category structures. For convenience, we will now also

denote by X the category fibered in groupoids C/X → C. In the P (C, Grpd) or

Grpd/C, let S denote the set of maps

S = {hocolimU• → X : {Ui → X} is a cover in C}

where U• denotes the nerve of the covering {Ui → X}.



112 SHARON HOLLANDER Isr. J. Math.

Proposition 4.4: Let M be P (C, Grpd) or Grpd/C. There is a model category

structure on M which is the localization of the model structure of Theorems 4.1

or 4.2 with respect to the set of maps S.

We call these weak equivalences local weak equivalences.

Proof. Since homotopy colimits of cofibrant objects are cofibrant, the domains

and ranges of the morphisms in the localizing set are cofibrant. By Theorems 4.1

and 4.2, the model category structures on P (C, Grpd) and Grpd/C satisfy the

hypothesis of [Hi, Theorem 4.1.1], so the proposition follows.

Let M be P (C, Grpd) or Grpd/C. We will write ML for the category M with

the model structure given by the previous proposition.

Corollary 4.5: The adjoint pair p : P (C, Grpd)L ↔ (Grpd/C)L : Γ is a Quillen

equivalence.

Since in the old model structure on M every object is fibrant, and X ∈ C is

cofibrant, an object F ∈ ML is fibrant if and only if

Grpd(X, F ) → Grpd(hocolimU•, F ) = holimGrpd(U•, F )

is a weak equivalence for all covers. This happens if and only if F is a stack.

It follows that a fibrant replacement functor for ML is a stackification

functor. One of the properties of localizations of model categories is that local

equivalences between fibrant objects are just the old equivalences. It follows

that a local equivalence between stacks is just an objectwise weak

equivalence.

Remark 4.6: Since stacks are the fibrant objects, and representables are cofi-

brant, it follows that when M is a stack, h Hom(X,M) is equivalent to the

groupoid M(X). In particular, [X,M] is the set of isomorphism classes of

M(X).

Remark 4.7: It is not hard to check that a small presentation (in the sense

of [Dg, Definition 6.1]) of P (C, Grpd)L is given by the Yoneda embedding of C

in P (C, Grpd) and the set of maps

• X ⊗ ∂∆n → X ⊗ ∆n, for all X ∈ C, n > 2,

• hocolimU• → X for all covers {Ui → X} in C.
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This means that the local model category structure is the “quotient” of the

universal model category generated by C by the relations given by the maps

above.

5. Characterization of local equivalences

In this section we prove that a morphism f is a local weak equivalence in the

model structure of proposition 4.4 if and only if it satisfies one of the following

equivalent properties:

• f is an isomorphism on sheaves of homotopy groups;

• f satisfies the local lifting conditions, (Definition 5.6);

• f is a stalkwise weak equivalence (when C has enough points).

It follows that a map between stacks satisfying one of the above properties is

actually an objectwise equivalence.

We use this to prove that our local model structure P (C, Grpd)L is Quillen

equivalent to the S2-nullification of Joyal’s model structure on presheaves of

simplicial sets [Ja].

Using the characterization of local weak equivalences we also prove that there

is a local model category structure on Sh(C, Grpd) such that the adjoint pair

sh : P (C, Grpd)L ↔ Sh(C, Grpd) : i is a Quillen equivalence.

5.1. Joyal’s model structure. For a simplicial set X , and basepoint a ∈ X0,

πn(X, a) denotes the n-th homotopy group of the fibrant replacement of X with

basepoint the image of a.

Definition 5.1 ([Ja]): Let F be a presheaf of simplicial sets or groupoids. Then

• π0F is the presheaf of sets defined by (π0F )(X) := π0(F (X)).

• For F ∈ P (C, sSet) and a ∈ F (X)0, πn(F, a) is the presheaf of groups

on C/X defined by

πn(F, a)(Y
f

−→ X) = πn(F (Y ), f∗a).

For F ∈ P (C, Grpd) and a ∈ ob F (X), πn(F, a) := πn(NF, a).

We say that a map F
φ

−→ G of presheaves of simplicial sets or groupoids is an

isomorphism on sheaves of homotopy groups if the induced maps shπ0(φ)

and shπn(φ, a) are isomorphisms for all a ∈ F (X), and all X ∈ C.
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Note that if F is a presheaf of groupoids then πi(F, a) = 0 for i > 1, and

π1(F, a) is the presheaf of groups AutF (a) on C/X , where

AutF (a)(Y
f

−→ X) := AutF (Y )(f
∗a).

Note also that if F → G is an objectwise weak equivalence, then the induced

map of presheaves of homotopy groups is an isomorphism.

Note 5.2: If C has enough points then a map induces an isomorphism on sheaves

of homotopy groups if and only if it induces an isomorphism on the stalks of the

sheaves of homotopy groups, which is equivalent to inducing an weak equivalence

on the stalks.

Reference 5.3 (Joyal’s Model Structure [Ja]): There is a left proper, cofibrantly

generated, simplicial model structure on P (C, sSet) where

• cofibrations are the maps which are objectwise cofibrations,

• weak equivalences are the maps which are isomorphisms on sheaves of

homotopy groups,

• fibrations are the maps with the right lifting property with respect to

the trivial cofibrations.

The Joyal model category will be denoted by P (C, sSet)J . Note that in the

S2-nullification of P (C, sSet)J the weak equivalences are the maps which induce

isomorphisms on the shπ0 and shπ1.

Theorem 5.4: There is a Quillen equivalence between the model categories

P (C, Grpd)L and the S2-nullification of P (C, sSet)J given by the adjoint pair

(πoid, N) and the identity adjunction of P (C, sSet).

Proof. The result follows from localizing the Quillen equivalence in Theorem

1.2 of [DHI] combined with the application of Corollary A.9 of [DHI].

Corollary 5.5: The weak equivalences in P (C, Grpd)L are the image under

πoid of those in (S2)−1P (C, sSet)J . In particular, a morphism f ∈ P (C, Grpd)

is a local weak equivalence if and only if it induces an isomorphism on sheaves

of homotopy groups.

5.2. Characterization of local weak equivalences. The following def-

inition is the restriction to groupoids of the local lifting conditions of Section 3

of [DHI] for simplicial sets.
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Definition 5.6: A map F
φ

−→ G ∈ P (C, Grpd) is said to satisfy the local lifting

conditions if:

(1) Given a commutative square

∅ //

��

F (X)

��
⋆ // G(X)

⇒ ∃ cover U → X ,

⋆
**i h f e b _ \ Y X V

��

∅oo //

��

F (X)

��

// F (U)

��

∆1
33V X Y \ _ b e f h

⋆oo // G(X) // G(U).

(2) For A → B, one of the generating cofibrations ∂∆1 → ∆1, BZ → ⋆,

given a commutative square

A //

��

F (X)

��
B // G(X)

⇒ ∃ cover U → X ,

A //

��

F (X)

��

// F (U)

��
B //

55lll
ll

lll
l

G(X) // G(U).

Theorem 5.7: A map F
φ

−→ G ∈ P (C, Grpd) is an equivalence on sheaves of

homotopy groups if and only of it satisfies the local lifting conditions.

Proof. Recall that for F a presheaf, its sheafification shF , can be constructed

by setting

shF (X) = colim(eq F (U) ⇒ F (V ))

where the colimit is taken over all covers U → X and V → U ×X U . It follows

that if a ∈ shF (X) then there exists a cover U → X such that a lifts to an

element of F (U). Similarly if a, b ∈ F (X) have the same images in shF (X) there

exists a cover U → X so that they have the same image in F (U). Conversely

these two properties are enough to characterize the sheafification. It follows

that the lifting conditions for ∅ → ⋆ and ∂∆1 → ∆1 are equivalent to shπ0φ

being an isomorphism, and the lifting conditions for BZ → ⋆ and ⋆ → BZ

(which is implied by that for ∂∆1 → ∆1) are equivalent to sh Autφ(a) being an

isomorphism for all a ∈ F (X), X ∈ C.

The following two Corollaries are straightforward excercises using the local

lifting conditions.

Corollary 5.8: In P (C, Grpd)L:

• The pullback of a weak equivalence by a levelwise fibration is again a

weak equivalence.
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• The pullback of a weak equivalence which is a levelwise fibration is weak

equivalence which is a levelwise fibration.

In particular P (C, Grpd)L is right proper.

Corollary 5.9: If F
φ

−→ G ∈ P (C, Grpd) is a local weak equivalence and F

is a stack then φ is a levelwise weak equivalence.

5.3. Local model category structure on sheaves of groupoids.

Proposition 5.10: There exists a local model category structure on

Sh(C, Grpd), denoted Sh(C, Grpd)L, in which a morphism f is a weak equiv-

lance (resp., fibration) if and only if i(f) is a weak equivalence (resp., fibration)

in P (C, Grpd)L. Furthurmore, the adjoint pair

P (C, Grpd)L

sh

00 Sh(C, Grpd)L

i
qq

induce Quillen equivalences between the local model structures.

Proof. To see that the model structure Sh(C, Grpd)L is well defined it suffices

to show that given a generating trivial cofibration f in P (C, Grpd)L, that sh(f)

is a weak equivalence, and that the pushout of sh(f) along any morphism in

Sh(C, Grpd) is still a weak equivalence. Both of these statments follow since the

natural transformation F → i(shF ) satisfies the local lifting conditions, and so

is a weak equivalence in P (C, Grpd)L. This also implies that (sh, i) is a Quillen

equivalence.

Corollary 5.11: A morphism X
f

−→ Y ∈ Sh(C, Grpd)L is a weak equivalence

if and only if it is objectwise full and faithful, and satisfies 5.6(1).

The following is a consequence of Corollary 5.9:

Corollary 5.12: Let F ∈ P (C, Grpd) be a stack, then sh(F ) is also a stack.

Appendix A. Limits and colimits in Grpd/C

The goal of this section is to prove the following

Theorem A.1: Categories fibered in groupoids over C are closed under small

limits and colimits.
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In order to prove this, we will need a few preliminaries.

Definition A.2: F : E → C ∈ Cat /C is pre-fibered in groupoids if

(1) Given f : Y → X ∈ C and X ′ ∈ E such that F (X ′) = X , there exists

f ′ ∈ E, with target X ′, such that F (f ′) = f .

(2) Given a diagram in E, over the commutative diagram in C,

Y ′

f ′

��

F +3 Y

h

��~~
~~

~~
~~

f

��
Z ′

g′

// X ′
F +3 Z

g
// X,

with F (f ′) = f, F (g′) = g, there exists h′ such that g′ ◦ h′ = f ′ and

F (h′) = h. Moreover, given two such maps h′
1, h

′
2, there exists an

automorphism φ ∈ AutE(Y ′) such that F (φ) = idY and h′
1 ◦ φ = h′

2.

Thus, the difference between fibered and pre-fibered is that categories which

are pre-fibered in groupoids satisfy a weaker condition than the uniqueness in

Condition (2) of Definition 3.1.

Proposition A.3: Let I be a small category, and F : I −→ Grpd/C, a diagram.

Then the colimit of the diagram F in Cat/C is pre-fibered in groupoids.

Proof. The coproduct in Cat/C of a set of objects in Grpd/C is again in Grpd/C

so it suffices to consider the case of a coequalizer diagram. Consider the diagram

R
F1

F2

+3

��>
>>

>>
>>

E //

��

Ē

����
��

��
�

C

where F1, F2 are maps in Grpd/C and Ē is the coequalizer of the two arrows

in Cat. Recall that the coequalizer in Cat has objects the coequalizer of the

sets of objects, and morphisms the formal compositions of the coequalizer of

the morphisms, modulo the relations given by composition in E. Thus the

map Ē −→ C clearly satisfies Condition (1) of Definition A.2. The proof that

Condition (2) holds follows bellow:

Lemma A.4: Let X ′ and Y ′ be in E, and suppose f̄ : [X ′] → [Y ′] is a map

between their images in Ē. Write X = F (X ′) and Y = F (Y ′) in C. Then there
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is a sequence of objects R1, R2, . . . , Rn ∈ R with F (Ri) = X and maps in E:

X ′ // F1(R1) F2(R1)

yyrrrrrrrrrr

F1(R2) F2(R2)

yyrrrrrrrrrr

F1(R3) F2(R3)

yyrrrrrrrrrrr

. . . F2(Rn−1)

yyrrrrrrrrrr

F1(Rn) F2(Rn) // Y ′

with all but the last covering the identity map of X in C, such that f̄ is the

composite of images

[X ′] → [F1(R1)] = [F2(R1)] → [F1(R2)]

= [F2(R2)] → [F1(R3)] → · · · [F2(Rn−1)] → [F1(Rn)]

= [F2(Rn)] → [Y ′] in Ē.

Proof. Use properties of groupoids over C to simplify the expression of a map

in Ē as formal composition of maps in E, modulo the relations given by R.

Note that the maps X ′ → F1(R1), F2(R1) → F1(R2), F2(R2) → F1(R3), . . .

F2(Rn−1) → F1(Rn), are isomorphisms in E because they cover the identity of

X in C. Also note that [F2(Rn)] → [Y ] covers the same maps as f̄ .

Corollary A.5: Suppose f̄ and ḡ are maps [X ] → [Y ] in Ē covering the same

map f in C. Then there is an automorphism φ of [X ′] such that f̄ ◦ φ = ḡ.

Proof. Factor f̄ and ḡ as in Lemma A.4:

[X ′] → [F1(R1)] = [F2(R1)] → [F1(R2)] = [F2(R2)] → [F1(R3)] → · · ·

· · · [F2(Rn−1)] → [F1(Rn)] = [F2(Rn)] → [Y ′],

[X ′] → [F1(S1)] = [F2(S1)] → [F1(S2)] = [F2(S2)] → [F1(S3)] →

· · · [F2(Sk−1)] → [F1(Sk)] = [F2(Sk)] → [Y ′].
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Consider the diagram in E, over the diagram in C,

F2(Sk)

��

F +3 X

f

��
F2(Rn) // Y ′

F +3 X
f

// Y.

As E is fibered in groupoids over C there is a unique isomorphism

F2(Sk)
h

−→ F2(Rn)

covering the identity of X so that

F2(Sk)

h

zzttttttttt

��
F2(Rn) // Y ′

commutes in E. Let φ be the composite

[X ′] → [F1(S1)] = [F2(S1)] → · · · [F1(Sk)] = [F2(Sk)]
h̄

−→ [F2(Rn)]

= [F1(Rn)] → [F2(Rn−1)] → · · · [F1(R2)] → [F2(R1)]

= [F1(R1)] → [X ′]

where the second set of maps are the inverses of the isomorphisms in the fac-

torization of f̄ .

Proposition A.6: The coequalizer Ē satisfies Condition (2) of Definition A.2.

Proof. Given a diagram in Ē, over the commutative diagram in C,

Ȳ ′

f̄ ′

��

F +3 Y

h

��~~
~~

~~
~~

f

��
Z̄ ′

ḡ′

// X̄ ′
F +3 Z

g
// X,

with F (f̄ ′) = f, F (ḡ′) = g, factor f̄ ′ and ḡ′ as in Lemma A.4

[Y ′] → [F1(R1)] = [F2(R1)] → [F1(R2)] = [F2(R2)] → [F1(R3)] → · · ·

[F2(Rn−1)] → [F1(Rn)] = [F2(Rn)] → [X ′],

[Z ′] → [F1(S1)] = [F2(S1)] → [F1(S2)] = [F2(S2)] → [F1(S3)]

· · · [F2(Sk−1)] → [F1(Sk)] = [F2(Sk)] → [X ′].
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Then there is a unique lift of X
f

−→ Z in the diagram in E, over the commutative

diagram in C,

F2(Rn)

u

zzt
t

t
t

t

��

F +3 Y

h

����
��

��
��

f

��
F2(Sk) // X ′

F +3 Z
f

// X.

The map

[Y ′] → [F1(R1)] = [F2(R1)] → · · · [F1(Rn)] = [F2(Rn)]
ū

−→ [F2(Sk)]

= [F1(Sk)] → [F2(Sk−1)] → · · · [F2(S1)] = [F1(S1)] → [Z ′]

provides the desired lift of h in Ē.

This completes the proof of Proposition A.3

Proposition A.7: Let E → C be pre-fibered in groupoids. Let ∼ be the

equivalence relation on E generated by setting α ∼ id for the automorphisms

α ∈ E which satisfy:

(1) α maps to an identity morphism in C,

(2) there exists f ∈ E such that f ◦ α = f .

Then (E/ ∼) → C is also pre-fibered in groupoids.

Proof. The proof follows from the fact that the map E −→ (E/ ∼) is surjective

on morphisms and bijective on objects.

Proof of Theorem A.1. Let I be a small category and F : I −→ Grpd/C be a

diagram. We denote by F ′ the composite I
F
−→ Grpd/C −→ Cat/C.

Colimits: Let E0 denote the colimit of F ′ in Cat. We will show that the desired

colimit of F in Grpd/C is the directed colimit E in Cat/C of the categories Ei,

where Ei = Ei−1/ ∼.

(A.8) E0 → (E0/ ∼) = E1 −→ (E1/ ∼) = E2 −→ · · ·

Propositions A.3 and A.7 imply that Condition (1) and the existence part in

Condition (2) of Definition 3.1 are still satisfied by E.
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To show the uniqueness part in Condition (2), suppose given a commutative

diagram in E:

Y
f

//

h1h2

��

X

Z

g
>>~~~~~~~

such that h1 and h2 project to the same map in C. We can pick lifts h′
1 and

h′
2 of h1 and h2 in some Ei. They also project to the same map in C and as

Ei is pre-fibered in groupoids by Proposition A.3, there is an automorphism α

of Y in Ei mapping to an identity in C such that h′
2 ◦ α = h′

1. It follows that

h′
1 = h′

2 ∈ Ei+1 and so h1 and h2 agree in E.

To show that E is the colimit in Grpd/C, observe that if F is pre-fibered in

groupoids, and E′ is fibered in groupoids, then any map F → E′ ∈ Cat/C, factors

uniquely through F/ ∼.

Limits: Consider the inverse limit of our diagram in Cat/C. The objects and

morphisms of limF ′ are the inverse limits of the sets of objects and morphisms,

so for each object X ′ ∈ limF ′, the category (limF ′)/X ′, is the inverse limit of

categories F (i)/X ′
i, i ∈ I. It is easy to see that the map (lim F ′)/X ′ → C/X

• is a bijection on Hom-sets, since this is the case for each of the functors

F (i)/X ′
i → C/X ,

• is not necessarily a surjection on objects, even though each of the func-

tors F (i)/X ′
i → C/X is.

Consider the full subcategory of lim F ′ with objects all those X ′ such that

(lim F ′)/X ′ → C/X is surjective on objects. This subcategory is clearly fibered

in groupoids and satisfies the universal property of the limit.

Appendix B. Pushouts in Cat

The goal of this section is to prove

Proposition B.1: Let A, B, C be small categories, and A
i

−→ B be a functor

which is a monomorphism on objects, and A
j

−→ C a surjective equivalence of

categories. Then the induced functor to the pushout in Cat, B → P := C
∐

A B

is also a surjective equivalence of categories.
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Proof. First note that the universal map B
p

−→ P is surjective on objects.

If b, b′ ∈ obB, then p(b) = p(b′) if and only there exist a, a′ ∈ obA with

i(a) = b, i(a′) = b′ and j(a) = j(a′). So there is a unique map a −→ a′ ∈ A

which maps to the identity of j(a) and we will call the image of this map in

B the canonical map b −→ b′. For b not in the image of A the canonical map

b −→ b is defined to be the identity.

It is clear that p induces an isomorphism on components so it remains to

show that p induces an isomorphism

HomB(b, b′) −→ HomP (p(b), p(b′)).

For β, β′ objects of P , let W (β, β′) denote the set of words formed by formal

compositions of morphisms in B and C such that the first map in the word

has domain representing β, the last map has range representing β′ and con-

secutive maps have domains and ranges whose images in P agree. Recall that

HomP (β, β′) is the quotient of W (β, β′) by the equivalence relation generated

by the composition in B, composition in C and i(f) ∼ j(f) for f a morphism

in A.

Let b, b′ be objects of B and write β = p(b), β′ = p(b′). We will define

functions φb,b′ : W (β, β′) −→ HomB(b, b′) which are constant on the equivalence

classes of W (β, β′) and so determine functions HomP (β, β′) −→ HomB(b, b′).

It will be immediate from the construction that these are inverse to p and this

will complete the proof.

The functions φb,b′ are defined by induction on the length of words as follows.

Let w be a word of length 1. If w is a morphism c
f

−→ c′ ∈ C then let a, a′

be the unique objects in A such that i(a) = b, i(a′) = b′, j(a) = c, j(a′) = c′

and let a
g

−→ a′ denote the unique morphism in A such that j(g) = f . Define

φb,b′ (w) = i(g). If w is a morphism b1
f

−→ b2 ∈ B define φb,b′(w) to be the

composite b −→ b1
f

−→ b2 −→ b′ where the unlabeled arrows are canonical

morphisms.

Now suppose φb,b′ has been defined on words of length ≤ n and let w = w′f

where w′ is a word of length n and f is a morphism in B or in C. Let b′′ be

an arbitrary object of B mapping to the range of w′ and define φb,b′(w) as the

composite b
φb,b′′ (w

′)
−→ b′′

φb′′,b′ (f)
−→ b′. It follows from the construction that the

value of φb,b′ is independent of the choice of b′′ and that φb,b′ is constant on the

equivalence classes of W (β, β′).
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